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summary 
In some systems, the donor in a triplet-triplet energy transfer can be 

sensitized in its singlet state through a singlet-singlet energy transfer (Dexter 
mechanism), where the donor is the acceptor in the triplet transfer itself. As 
a consequence, an extra acceptor molecule in the triplet energy transfer is 
present in the vicinity of the donor, thus enhancing the efficiency of the 
transfer process. Experiments clearly show this effect and a diffusional 
model using concepts from the physics of simple liquids gives good agree- 
ment with the experimental data. 

1. Introduction 

It is well known that the overall rate of destruction for many initiators 
decreases with increasing viscosity of the medium El]. This effect has been 
interpreted in terms of radical pair formation and several models have been 
developed. In a recent paper [ 2], we presented a simple kinetic model 
representing the recombination of two reactive species in a solvent cage in 
which we were led to suppose that, at the moment when the two interacting 
species are formed, there exists an excess of energy which causes their 
separation at a mean distance greater than the reaction distance. 

A similar process occurs in reactions involving electronic energy trans- 
fer, in which the kinetics is nearly diffusion controlled [ 31, and in which two 
successive transfer reactions occur (Fig. 1). Indeed, when B*(S 1) is created in 
the reaction 

A*(&) + B - A + B*(S,) 

TPermanent address: UniversitQ libanaise, FacultB des Sciences II, Mansourieh el 

Metn, Lebanon. 

0047-2670/86/$3.50 0 Elsevier Sequoia/Printed in The Netherlands 



14 

Ener 

A* (S,l - 
/ 

A' 

y”” B* (s,) 

non-radiative f 
transition / 

absorption Sk 
B* (T$ 

2 nd energy 
transfer 

/ 
A* (T$ 

B 
Fig. 1. Scheme for the double energy transfer reaction_ 

with a sufficiently fast intersystem transition reaction B*(SI) + B”(T,), the 
configurational distribution of A around B*(T1) can no longer be assumed 
constant. Indeed, if this were so, the A molecule, which had carried the elec- 
tronic energy before the transfer, would not have enough time to diffuse 
into the available space and remains in the neighbourhood of B*(T1). 

Under these conditions, the kinetics of the reaction 

B*(T,) + A -B f A*(T1) 

between B*(T,) and A must be enhanced compared with a situation in which 
the con~~ation~ d~t~bution of A is uniform. 

Initially we developed a simple model, which is briefly summarized 
below, and we checked it using pyrene as A and biacetyl as B 141. These pre- 
liminary experiments and models enabled us to show that the configurational 
distribution of B is altered and that it is consistent with the distribution found 
in a cage reaction. We have tried to improve the theoretical model by including 
concepts from liquid physics. However, in view of the mathematical com- 
plexity of the problem, we have proposed a simplification of the reaction 
system; this has allowed us to obtain a relationship which can be used by the 
experimentalist. Moreover, in order to verify the experimental validity of the 
model, we have considered other emitting c~omopho~s whose singlet and 
triplet states are of energies above and below those of biacetyf: 1,2&enzan- 
thracene, 9,10-diphenylanthracene and 1,2,5,6-dibenzanthracene. These dif- 
ferent experiments point out the general validity of the simplificaticm and 
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can be interpreted with success using the models developed. In this paper we 
first give a mathematical description of the system and then describe the use 
of the models to fit the experimental results. 

2. Modelling of the transfer kinetics 

2.1, Simple model 
Let us first consider a mean concentration of A sufficiently small that 

the quenching reaction can be assumed to be the sum of two reactions: (a) a 
reaction originating mainly from a set of A molecules in the enlarged cage 
around B(T1); (b) a reaction originating from a quencher molecule placed 
outside the cage. 

The experimental results below show that it is possible for such a situa- 
tion to exist. The deactivation of B(T,) by the classical process based on a 
constant configurational distribution of A is very similar. We have deter- 
mined the yield of deactivation of B(T,) by A molecules by the electronic 
energy transfer reaction 

A(&) + B - B(S,) + A 

Consider an A molecule, created at time t = 0, close to B*(S,) at the 
reaction distance u. If the two molecules do not react, A will diffuse into the 
medium following the classical law 

(with no potential) [Z] where D is the mutual diffusion c’oefficient of A and 
B and @ is the local concentration of B. 

If y is the Laplace transform of ‘p 

Y(S) = r exp(--s7)cp@) d7 
0 

with 7 = Dt/o’, normalization gives 

1 1 
Y(s) = - 

ewC-s1’2(p - 1)) 

NV, 1 + s1’2 P 

where p is the ratio (distance of A from B*(S,))/o, N is Avogadro’s number 
and V,, = 4~0~. 

Defining a rate constant kO for the monomolecular relaxation of B*(S,) 
to B*(T,), it is possible to determine the expression for the mean configura- 
tional distribution of A around B*(T,) at the time when it is created: 
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If we assume that B*(T,) is created at t = 0, the configurational distribution 
of A around it is equal to the value of yKo for s = K, = koo2/D 

K, exp(-K,“‘2(p - 1)) 
(qP)= NV 

0 (1 + K*“2)P 

If we consider that the function at time r is (p(r), we have to solve 

%(V’) = a2V(rJ’) + 2 %(V’) 
87’ aP2 P GJ 

with given limiting conditions. If p(r) dT is the probability for that particular 
distribution to occur we can write 

and 

with P(T) = K,, exp(--K,T). This then becomes 

where X{~(~,r’))x~ is the Laplace transform of (p(r,#) for s = K@ This leads 
to an initial distribution (7’ = 0) given by 

K. exp{-Ko1’2(p - I)} 
(cp> = f{q(T,o)3,0 = F ’ ~~ _- ~~ 

0 (1 + Ko”2)p 

and to a corresponding time evolution. Figure 2 shows, as an example, the 
variations in the configuration of A around B*(T,) for different values of Ko- 

2.1.1. Static quenching 
When a chemical reaction between species can occur at a distance larger 

than the collision distance [ 3,5] and when the rate constant k(r) reaches 
high values, we assume that the rate constant is nearly infinite between o and 
a kinetic distance (T’ = Ru (R > 1) [3,6]. Although this model is open to 
some criticism [ 71, we have shown that the kinetics of the system was only 
slightly altered by using such a simple assumption, It also allows the experi- 
mental parameters to be easily determined [S]. The yield of the reaction 
between A and B(T,), between 1 and R, is expressed by 

SQ= 
K. exp(K01’2) R 

s 1+K01’2 1 
P ew C- (Kop 1 1’2l 

=I- 
Ko”2R + 1 

exp{-Ko1’2(R - K if2 + 1 l)} 
0 
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Fig. 2. Variations in the initial configurational distribution function of A around B*(Tl): 
curve 1, Ko = 0.01; curve 2, Ko = 0.05, curve 3, Ko = 0.1; curve 4, K,J = 0.5; curve 5, 
K. = 1; curve 6, Ko = 5; curve 7, Ko = 10; curve 8, K. = 50; curve 9, Ko = 100; curve 10, 
K,, = ==. 

2.1.2. Dynamic quenching 
Let cpl denote the configurational distribution function 

(Pl(P,O) = w = L 

exp(--Ko”2p) 

P 
where L is a normalizing distance. 

The evolution of rp, is given by 

and for p > R 

alPl= a25Q1 

.a7 ap2 
+ z %I 

P aP 

which leads, in Laplace space, to 

L exp(-Ko”2R) 

C2 + K01’2 R 

As 

d.W’d 
= -~TNcJRD 

dt 
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we obtain the following yield of dynamic qu.enching: 

DQ= 
R&l’2 

exp{-K,1f2(R - l)} 
1 

1 + K,“2 , l--Q 

2.1.3. Overall quenching 
The overall quenching is given by the sum of the static and the dynamic 

quenching: 

GQ= 
K,1’2(R - 1) + 1 

K,1’2 + 1 
exp{-Ko1/2(R - l)} 

2.2. Model including concepts from liquid physics 
Experiments can be interpreted using the preceding model. However, as 

it has already been pointed out in ref. 4, data obtained for a hydrocarbon 
solvent of low viscosity do not agree with the model. 

Thus the model developed in ref. 4 can only be considered as a model 
that cti reproduce trends. In order to refine the model, we have initially 
taken into account some concepts from the liquid physics of diffusion- 
controlled reactions. These models, for simple liquids, show that the radial 
distribution functions g(r) are obviously not uniform, particularly in the 
vicinity of the collision distance between the two reactants. This leads to an 
important modification of the kinetic results that are summarized below. 

2.2.1. Radiul distribution function and diffusion model of a reaction 
with a homogeneous distribution 
Consider the case of a homogeneous system of spherical molecules B, in 

an inert solvent S composed of spherical molecules of the same size. At t = 0, 
excitation with light, for example, generates very reactive A molecules which 
have the same properties as B and S but are reactive towards B. If we con- 
sider that every A-B encounter leads to a chemical reaction whose lifetime 
is taken to be nearly zero, it is possible to calculate the apparent rate constant 
k,(t) of the reaction by solving the classical equation 

where $j’ is a time evolution operator. 
Let $ be the apparent potential between A, B and S; g is then given by 

161 
9X = -(R V2X + K 0X*0$ + KX V2$) 

where the mobility coefficient K = D/kT is given by the Nernst-Einstein 
equation. 

2.2.1.1. DiZu te sob tion. As the molecular density fi approaches zero, 
we must solve the equation 
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to give an analytical expression 

k,(t) = 47rNo2D 
u 

0 (nDt)“2 

for the apparent rate constant. At CJ = 0, &r/o, 0) = 1 for rfo = p > 1 and we 
have to solve 

SY -l=y"+ zyt 
P 

with 

Y = p ew(---s~MpA d7 

and 

Dt 
7= - 

u2 

This leads to 

y= + l- 

[ 

exp{-s1’2@ - 1)) 

P 1 
1 

Y’(1) = f + s1/2 

and 

1 (7 
=1+ 

(#/2 = l+ 
(7rllt)1'2 

2.2.1.2. Realistic sohtion. Many authors have already studied systems 
of hard-core molecules [ 9 - 131. Generally, we can define a total correlation 
function h(r) = g(r) - 1 where g(r) is the radial distribution function and, 
from Omstein and Zemike 1141, a direct correlation function c(r) by 

rij = iri -rjI 
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The above integral is the convolution of h(r) and c(r). It gives the corre- 
lation of molecules 1 and 2, through the action of a third molecule. The 
hard-sphere approximation consists in setting c(r) = 0 and r > u, following 
Percus and Yevick [ 91. 

It can be shown [ 151 that the Laplace transform of g(r) is 

G(s) = 
SUS) 

1Wic~W) + exp(Wts)l 

with 

and 

S(S) = -_12~(1 + 2q) + 18q2s + 6fi(l - 4)s’ + (1 - V)2s3 

Smith and Henderson [ 161 have inverted this relation to obtain g(r) directly. 
But, for simplicity, we first transform G(s) into G(w) (s = iw) and then 
return to real space by using the fast Fourier transform (FFT) algorithm 
[ 171. This algorithm requires that the function being inverted approaches 
zero when s = 0 and s + =J. The G(s) do not obey this condition and we must 
consider the function 

W(s) = G(s) 

where exp(-s)( l/s + l/s2) is the Laplace transform of rU(r - l), where U(X) 
is defined by 

U(X) = Oforx <0 

H(s) is then a “good” function and we can apply the FFT algorithm. Then 
we just have to subtract rU(r - 1) to obtaing(r) numerically. Figure 3 shows 
some examples of such curves for two values of 77. 

Since the system is thermodynamically stable, we must have 

dg - 
dt +Gk=o for t > 0 

which leads to g(r) = exp(-$(r)/kT) and allows us to calculate the apparent 
potential $/F2T. 
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Fig. 3. Radial distribution function for two values of 77. 

2.2.1.3. Dimensionless relations and simplified model. At time t = 0, 
when A molecules are created, the distribution of B around A is represented 
by g(r) (after multiplication by a coefficient (B)). Subsequently, every time 
a B molecule encounters an A molecule there will be a reaction followed by 
the disappearance of the interacting species. Under these conditions, the 
apparent rate constant of the reaction between AandBis 

k,(t) = 47riVc2D 

with 

Pa =Q 

leading to 

E,(t) = 4nlva2D 
0 

Putting y = y7(F,t)&(F,o), p = F/U and 7 = Dt/02, if D is assumed to 
constant on varying F, we must solve the following simplified system: 

dy d2y __=-+ 
dr dp2 

$(;-$) 

with 

$=& 

and 

y(p)=lforp>landt=O 

remain 
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y(1) = 0 for t > 0 

6 is not a stationary function and we cannot solve this simplified equation 
through using any transform (Fourier or Laplace). For these reasons, we 
have solved the above system by numerical integration,_using a network 
method: the space is cut up into intervals Ari over which I/I(~) is assumed to 
be constant. We then have a linear system which can be solved in Laplace 
space, taking into account the continuity of y and dy/dp at the links in the 
network. Returning to real space is achieved as already discussed. 

2.2.1.4. Time evolution of the flux. The apparent rate constant 
tion is given by 

of reac- 

Figure 4 shows the variation of 61(~) = &,(7)/k,(r) with 7 for two values of 
4. 

Generally, 61(r) is nearly always a decreasing function which converges 
to an asymptotic value 63, that is greater than unity and dependent on q. 

Moreover, near t = 0, 6X,, is approximately given by 

&3 = =pc--IL(l)1 = g(l) 

This implies an initial flux much larger than that obtained by employing a 
uniform radial distribution function. 

1 

10-2 
I 

10-1 
r 

1 

Fig. 4. Variation in 62(7) US. T for two values of Q. 
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2.2.2. Case of u non-uniform distribution 
Concepts from liquid physics can be used in the case where the initial 

configuration of B around A is identical with that existing at the time of 
the first energy transfer (A*(S1) + B + B*(S,) + A, for example). From the 
apparent potential defined for hard spheres, we must solve the system 

with the conditions 

and 

This system can easily be solved by a numerical network method, leading to 
a representation of rp(p,~) (see Fig. 5). We must calculate a mean value at the 
time when B*(T,) is created, which is given by 

(cp) = J-k o ew(---ko W(P ,t) dr 
0 

Now, contrary to when q can be expressed in a transform space such as 
Laplace space, (up> must be calculated by numerical integration for each 
value of koa2/D. For this reason and in view of the difficulties of obtaining 
more accurate experimental data, we have tried to transform the physical 
system so that an expression for (q> can be obtained. 

2.2.3. Simplified system 
Let us consider, for the case of a diffusion-controlled reaction, the 

existence of an apparent potential with discrete values, as plotted in Fig. 6, 
which is consistent with the concepts from liquid physics as defined above: 
it is assumed that 

‘p = P for p E [l,R] 

cp=l for p>R 

Using this potential, we can solve ap/at + 9~ = 0 and find a simplified 
solution in Laplace space. If y is the Laplace transform of rp exp(-$1, two 
functions can be calculated: 

~1 for P E LRI 

y2 for p>R 
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Fig. 5. Variation in (p(p,~) vs. p and r for q = 0.5. 
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Fig. 6. Simplified model (see text). 

with the limiting conditions 

(YI)R = (Y2)R 

For a totally diffusion-controlled reaction, we have 

(Yl)l = 0 

From these considerations, the expression f for the flux of B towards A in 
Laplace space is 

f(s) = p 
[ 
(s 

1’2 + l){(P + l)PR - (P - 1)) expG@‘2(R - 113 _ (S1,2 _ 1) 
(P - 1)(&Q + 1) 1 x 

x 
I 

1+ v+ 1)s1'2R -P-l) exp{4&p2(~ _ 1)) -l 

(P - l)(PR + 1) I 
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It is not easy to calculate the corresponding function in time space by clas- 
sical methods although it is possible by using an FFT. However, in view of 
the simplifying assumptions already made, here we have only examined the 
flux at large times; this allows us to take a Taylor expansion of f(s), giving 
the simple expression 

RP f(s) = 
s(R + P - 1) ( 

1 + R +Rf_ 1 si’2 + *. . 
1 

which can be easily inverted, giving 

RP RP CJ 
k(t) = 47rNaD 1+ + 

R+P-1 R +P-1 (nDt)“2 **- 

This means that k(t) only depends on the parameter RP/(R + P - 1). Com- 
paring this expression with the numerical expression obtained by numerical 
integration, for the case of hard spheres, we can reasonably adjust the two 
kinds of functions, as is shown in Fig. 7. This enables us to replace the phys- 
ical system by a simple system, which is easier to handle mathematically and 
leads to kinetic results which are very similar. 

Starting with the above simplifying assumptions, we propose a model 
for the transport out of the cage. Let us consider two regions 

for p f [ l,R], function q1 

forp >R, function q2 

I 
I 

10-2 
1 

10-I 
I I - 

1 10 z 
Fig. 7. Comparison of computed values of K(T = Dt/a2) using concepts from liquid phys- 
ics (full line) with the expression of Section 2.2.3: 0, RP/(R + P - 1) = 1.24; +, RP/(R + 
P- 1) = 1.2. 
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and assume that the species are in contact at time t = 0. In the Laplace space 
we thus obtain 

~1 =A1 
exp(-s1’2p) .+ B exp(si’$) 

1 for p E [l,R] 

P P 

~2=A2 

exp(--s”2p) 
forp >R 

P 

with 

Al = CIBl 

A2= + exp(2s1’2R)}Ri 

Ps”~R - 1 

sI’~R + 1 
exp( 2s1’2R) 

I 

1 
- = NV, (exp(--s1’2R)(Rsa’2 + 1)) C1 

1 

(1 --P) + exp(2s1’2R) + 

Bl 

p 
P t 

+ exp(s 1’2R)(Rs1’2 - 1) + Ci exp(-s1’2)(s1’2 + 1) - exp(-s1’2)(s1’2 - 1) 

As above, we choose a mean value of $J weighted by K0 exp(-KOr): 

(& = 0 = K*Y ,(K,) 

((P2L = 0 = &32wcJ 

Starting with this initial configuration it is then possible to calculate the time 
evolution of the flux by solving 

with the condition qpp = 1 = 0. 
For this study, it does not seem important to take into account the 

static quenching term. However, this can be done by making the same 
assumption as in Section 2. 

In Laplace space, the derivation of ‘p is given by 

1 = F = -a,(s “’ + 1) exp(-sf’2) + fi1(s112 - 1) exp(s1’2) + 
Ko 

K,-s 
Al X 

x (Ko1’2 + 1) exp(-K,f’3) - 
KQ 

Ko-s 
B1 (Ko1’2 - 1) exp(Ko1’2) 
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where (~1, PI, 4 and B1 are functions of s independent of p, and F is a 
dimensionless flux (see Appendix A). 

The reaction yield in the enlarged cage is calculated in the way previ- 
ously described. We calculate the amount Y which reacts using 

Y = J 47r02D dt 
0 1 

which, with a multiplication factor 4x0~0, is the hmit of SF when .s 
approaches zero. This calculation has been computed and leads, for example, 
to the results collected in Fig. 8. These show that the values of P and I2 have 
an important effect on the yield of energy transfer. 

The two models are compared in Section 3. 

A I-Y 
I_ 

P= I.? R= 1.5 

Fig. 8. Variation in 1 - Y (Y, yield of double transfer} vs. the viscosity q for two sets of 
parameters R and P. 

3. Experimental results and discussion 

In a recent paper, we presented a simplified model for a diffusion- 
controlled reaction with a double energy transfer and gave pyrene-biacetyl 
as an experimental example 141. We found quite a good agreement between 
the experimental trends and those of the model, concerning the transfer 
yield in the enlarged cage. A pyrene molecule transfers its energy to singlet 
biacetyl. This energy raises the biacetyl to its triplet state and it can then 
transfer the energy to the original pyrene molecule, if it has not diffused out 
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of the cage 133. In Section 2, we proposed a simple model by employing 
elementary concepts from liquid physics. We considered that molecules are 
hard spheres and that there is no potential between them. 

In order to check the generality of the process of double transfer and to 
improve the modelling of such reactions, we have studied reactions occurring 
in an enlarged cage: between pyrene, 9,10-diphenylanthracene, 1,2,5,6- 
dibenzanthracene or 1,2-benzanthracene (A) and biacetyl (B). These sub- 
stances A and B indeed have energy levels such that the transfers A(&) + B + 
B(S,) + A and B(T,) + A + A(T,) + B are exoenergetic and very efficient 
(Fig. 1). Moreover, biacetyl,is a particularly interesting molecule which emits 
both fluorescence and phosphorescence in solution. Lastly, measurements 
were made in different media of different viscosity. The experimental results 
indicate the obvious general trend already established in ref. 4. It is possible 
to show that the model employing concepts from liquid physics leads to 
results which agree better with physical reality than do those using the 
simplified model (see ref. 4 and Section 2). 

3.1. Experimental de taiIs 
3.1. I. Products and ma teriub 
Solvents (cyclohexane (Spectrosol), paraffin oil (Uvasol) and cyclo- 

hexanol (Fluka)) and aromatic compounds (purissimum from Fluka) were 
used without purification. Biacetyl (purissimum from Fluka) was vacuum dis- 
tilled in order to remove polymers. Solutions were carefully degassed by per- 
forming four freeze-pump-thaw cycles to ensure the absence of oxygen in 
the measuring cell. Spectrofluorometry and spectrophosphorometry experi- 
ments were carried out using a JY3 spectrofluorometer from Jobin-Yvon, 
ISA division. Typically, spectral widths of 10 nm were used for both exci- 
tation and analysis. Measurements were made at room temperature (20 “C) 
and the viscosity was determined, at the same temperature, with a Prolabo 
automatic viscosimeter. 

3.1.2. Technique for the measurement of the transferyield for B*(T,) + 
A*(T,) 
Two experiments were carried out: (i) excitation at X = 420 nm of 

biacetyl in order to study the transfer B*(T,) + A*(T,) without double trans- 
fer; (ii) excitation at h = 335 nm of the aromatic compound A in order to 
study the effect of double transfer. Variations in fluorescence and phospho- 
rescence intensities were then compared, as discussed below, allowing the 
calculation of the yield Y of double transfer. 

The fluorescence of biacetyl was monitored at 470 nm and its phospho- 
rescence was monitored at 520 nm (Fig. 9). By exciting biacetyl at 420 nm, 
we measured the intensities 1:;: 
I;gfIgo”_ 

and 122$ leading to a ratio of emissions: PO = 

When excited at 335 nm biacetyl absorbs part of the exciting light. 
The phosphorescence at 520 nm includes a component 1&-, due to direct 
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> 
300 400 500 600 

A (nm) 
Fig. 9. Emission spectra of a mixture of biacetyl (2 x lop2 M} and pyrene (10e6 M) in 
30vol.%cyclohexane-70vol.%paraffin oil (LX, = 335 nm). The broken line indicates the 
contribution of pyrene alone. 

excitation, which can be deduced from the fluorescence intensity 1::: at 
470 nm after subtraction of the aromatic contribution according to 

G20 = P*I g; PM 

NAI + WI 

where CY_ and p are the absorption coefficients of A and B respectively. 
The total phosphorescence intensity 1;;: is the sum of I‘& and of the 

sensitized component 1:20. Then 

GoO I& = 1;;; - - 
PDI 

m 
13% 

470 a[ A] + P[B] 

The yield Y of double transfer is expressed by 

Is,20 Go0 y=1--- 
GO Go” 

and can be calculated from the above relationships. However, it must be 
pointed out that certain constraints appear in carrying out such an experi- 
ment; indeed, it is necessary, for simplicity, to work under conditions such 
that the emission is nearly linearly proportional to the concentration of the 
reagents A and B. This implies an optical density, at the excitation wave- 
length, lower than about 0.2. This condition leads to limitations of the 
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concentration, mainly for biacetyl, which absorbs only weakly at 335 nm. 
The viscosity cannot then be varied over too large a range. Indeed, the reae- 
tion A*(S,) + B must also be allowed, which is difficult to measure in media 
which are too viscous. 

3.1.3. Study of the reaction A*(S,) + B 
The reaction A*(S,) + B is well known and allows the estimation of the 

quantity of energy transferred to biacetyl by measurement of the fluores- 
cence quenching of A* versus [B]. 

3.1.4. Lifetimes of singlet excited states 
The lifetimes of the singlet excited states were measured by time- 

resolved spectroscopy with correlated single-photon counting, using partly 
home-made apparatus. Lifetimes were calculated by iterative reconvolution. 

3.2. ExperimentaE results 
Measurements were 

biacetyl pairs in mixtures 
mixtures. 

carried out for different aromatic compound- 
of hydrocarbons or in cyclohexanecyclohexanol 

3.2.1. Study of the reaction A*(S,) + B 
The study of the reaction A*(S,) + B is actually complementary to the 

subject matter of this paper, but the experiments that have been performed 
allow us to begin a kinetic analysis of this first energy transfer when excita- 
tion is continuous_ Figure 10 shows the variations in the product K,,q versus 
q (where K,, is the Stem-Volmer constant and 71 is the viscosity of medium) 
in cyclohexane-paraffin mixtures. It is clear that K,,q is constant with Q for 
the pyrene-biacetyl pair. It has already been shown that the kinetics of the 
reaction pyrene(S1) plus biacetyl is diffusion controlled [9]. This result 

1 

0.5 

\ 
K,,.IJ (a.u.) 

0 0 
a 

0 1 I r I r I I I I 1 ) 
2 4 6 6 10 

Fig. 10. Variation in K,T vs. 7) in mixtures of cyclohexane and paraffin. 
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enables us to assume that Stokes’ law is approximately obeyed. However, this 
assumption must be made with care as, under continuous excitation, two 
effects, resulting from static and dynamic quenching, can appear. For this 
reason, measurements with pulsed excitation have been undertaken. They 
should enable a better understanding of the relationship between the 
diffusivity R and the viscosity Q in the solvents of interest. 

3.2.2. Double energy transfer 
Figure 11 shows the variations in the fluorescence and phosphorescence 

spectra of biacetyl either sensitized by electronically excited pyrene or 
directly excited at 420 nm (at which pyrene is transparent). Figure 11 
clearly indicates that the phosphorescence of biacetyl relative to its fluores- 
cence is smaller when biacetyl is sensitized by pyrene than when it is directly 
excited. This result is due to double energy transfer. 

b Fluorescence intensity (a.~.) 

, 
I’ 

r 1 r 1 1 1 > 

400 500 6oo h (nm) 

Fig. 11. Emission spectra of biacetyl (solvent, degassed cyclohexane-paraffin mixture 
(q a 9 cP); [hiacetyl] = lo-* M; fpyrene] = low6 M): full line, direct excitation of 
biacetyl (&.,,, = 420 nm); broken line, sensitization by pyrene ( bXC = 335 nm). 

Figure 12 illustrates variations in the yield Y of double transfer 
(defined in Section 3.1.2) uersus Q for all the aromatic compounds used in 
the presence of biacetyl and for cyclohexane-paraffin mixtures. We note 
that, within the experimental accuracy, these products react in the same way 
with biacetyl. 

The choice of solvent does not seem to be of major importance as the 
effect of 77 on Y when the solvent is a mixture of cyclohexane and cyclo- 
hexanol is practically identical with that when the solvent is a cyclohexane- 
paraffin mixture, as shown in Fig. 13. 

3.3. Interpretation of the experimental results 
In ref. 4 we proposed a simple kinetic model in which we assumed a 

chemical reaction distance Ro (a being the collision distance). Starting from 
the fact that A molecules present between u and Ru interact immediately 
with B(T1), it is possible to obtain a simplified expression 
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2 4 6 8 Tl (CP) I0 

Fig. 12. Variations in 1 - Y (Y, yield of double transfer) us. Q in cyclohexane-paraffin 
mixtures: curve 1, simplified model; curve 2, with the assumptiyn of a non-uniform radial 
distribution function (P = 7.5, R = 1.25 and u = 6 a); curve 2 , as curve 2 with P = 6.2, 
R = 1.2 and u = 7 A. Aromatic compounds: 0, pyrene; 0, 1,2-3,4_dibenzoanthracene; 
0, 1,2-benzanthracene; l , diphenylanthracene. 

f 
I-Y 

I SW 
0 I I 1 , I 

2 4 6 8 ‘0 l-l (CP) 

Fig. 13. Variations in 1 - Y (Y, yield of double transfer) us. 77 in cyclohexane-cyclohexa- 
no1 mixtures (0) and in cyclohexane-paraffin mixtures (0) (aromatic compound, pyrene). 

Y=GQ= 
Kp(R - 1) + 1 

K01’2 + 1 
exp{-KO1’“(R - I)} 

for the yield of double transfer, in which K. = koa2/D, k. is the monomolec- 
ular rate constant of intersystem transition for biacetyl and D is the mutual 
diffusion coefficient of A and B. 

This very simple model assumes uniform radial distribution functions, 
which is the case for media of low density with no potential between 
reactants and solvent. Moreover, the molecules are assumed to be spherical. 
The graphs shown in Fig. 11 indicate that it is possible to find a satisfactory 
fit between this simplified model and the experimental results. Assuming 
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k,, = IO8 s-l and the validity of the Stokes law, we calculate an R value of 
about 1.6, which gives a chemical reaction distance of about 10 A. It is usual 
to find values of the reaction distance Ru much larger than the collision 
distance u in investigations of fluorescence quenching following diffusion- 
controlled kinetics. However, knowing the overlap integrals between reac- 
tants, it can be shown that for such distances this overlap is nearly zero, 
which makes energy transfer unlikely. Discrepancies between the experi- 
mental results and the model can arise from phenomena which have not been 
taken into account in the model, such as interaction potentials and radial 
distribution functions. The calculation of the interaction potential is quite 
tedious, but in Section 2.2.3 we have been able to develop a model 
including, in a simple way, some of the concepts from liquid physics, 
leading to an expression for Y in terms of the two parameters R and P (P > 1 
between 1 and R). Calculations have been carried out without the assump- 
tion of static quenching. Now, as it is shown in Figs. 12 and 13, numerical 
adjustment of these two parameters leads to good agreement between the 
experimental results and the model. However, for small values of the 
viscosity 17, a discrepancy still remains but is of less importance. Under our 
conditions, the most probable values of R and P (which have a physical 
significance contrary to a very large chemical reaction distance) are 

P= 7.5 

1 

P = 6.2 
u=6A 

1 

0=78 
R = 1.25 R = 1.2 

Discrepancies at small values of 77 can have different explanations: (i) local 
potentials between excited molecules and reagents or solvents; (ii) variations 
in the mutual diffusion coefficient with distance; (iii) a non-totally diffusion- 
controlled reaction between B*(T,) and A; (iv) partial non-validity of the 
Stokes law etc. 

It is possible to take these different physical conditions into account in 
a new model, but this requires fixing these conditions Q priori in order to 
reduce the number of dynamic parameters to a minimum. These consider- 
ations suggest some further experiments, and these are in progress at present. 
However, we believe that the model developed in this paper enables us to 
explain the main features of the double transfer phenomenon, with no 
assumption for the chemical reaction distance. 
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Appendix A 

F is calculated as follows. If u = s~‘~ we define 

y(u) = A 1 exp(--K,1’2R) K,,1’2R 
UR + 1 

+ l- 
P 

-B1 exp(K01’2R) X 

X Ko1’2R - 1 + 
uR + 1 + A, exp(-Ko1’2R)(uR - Ko”2R)K,-, 

P K,--u 2 

c%(u) = 
{uR(P + 1) - (P - 1)) exp(2uR) 

(P - l)/(uR + 1) 

PlW = 
-_y(W exp(zW + WA, expt--K, 
(P- l)(uR + 1) 

1’2 + u) + B, exp(K,“*+ u)) x 

Ko-U 2 3 

X (so(u) + exp(2u)}-l 

al(u) = %(u)Pl(u) + 
WW ew0.W 
(P-l)(uR + 1) 

F(u) = -a,(u)(u + 1) exp(-u) + (u - l)& exp(u) + 

+ 
K,,A 1(K01’2 + 1) exp(--K,1’2) KOB1(K01’2 - 1) exp(K01’2) - 

Ko-32 K,--d 

. 


